Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This article presents a novel approach for generating metamaterial designs by leveraging texture information learned from stochastic microstructure samples with exceptional mechanical properties. This eXplainable Artificial Intelligence (XAI)-based approach reduces the reliance on brainstorming and trial-and-error in inspiration-driven design practices. The key research question is whether the texture information extracted from stochastic microstructure samples can be used to design metamaterials with periodic structural patterns that surpass the original stochastic microstructures in mechanical properties. The proposed approach employs a pretrained supervised neural network and applies the Activation Maximization Texture Synthesis (AMTS) method to extract representative textures from high-performance stochastic microstructure samples. These textures serve as building blocks for creating novel periodic metamaterial designs. Using three benchmark cases of stochastic microstructure-inspired periodic metamaterial design, we compare the proposed approach with an earlier XAI design approach based on Gradient-weighted Regression Activation Mapping (Grad-RAM). Unlike the proposed approach, Grad-RAM extracts local microstructure patches directly from the original sample images rather than synthesizing representative textures to generate novel periodic metamaterial designs. Both XAI-based design approaches are evaluated based on the mechanical properties of the resulting designs. The relative merits of both approaches in terms of design performance and the need for human intervention are discussed.more » « lessFree, publicly-accessible full text available May 1, 2027
-
Abstract This paper presents a novel approach for generating metamaterial designs by leveraging texture information learned from stochastic microstructure samples with exceptional mechanical properties. This eXplainable Artificial Intelligence (XAI)-based approach reduces the reliance of brainstorming and trial-and-error in inspiration-driven design practices. The key research question is whether the texture information extracted from stochastic microstructure samples can be used to design metamaterials with periodic structural patterns that surpass the original stochastic microstructures in mechanical properties. The proposed approach employs a pretrained supervised neural network and applies the Activation Maximization Texture Synthesis (AMTS) method to extract representative textures from high-performance stochastic microstructure samples. These textures serve as building blocks for creating novel periodic metamaterial designs. Using three benchmark cases of stochastic microstructure-inspired periodic metamaterial design, we compare the proposed approach with an earlier XAI design approach based on Gradient-weighted Regression Activation Mapping (Grad-RAM). Unlike the proposed approach, Grad-RAM extracts local microstructure patches directly from the original sample images rather than synthesizing representative textures to generate novel periodic metamaterial designs. Both XAI-based design approaches are evaluated based on the mechanical properties of the resulting designs. The relative merits of both approaches in terms of design performance and the need for human intervention are discussed.more » « lessFree, publicly-accessible full text available August 17, 2026
An official website of the United States government
